Answers

2. a. quadratic function

b. after $5\sqrt{2} \approx 7.07$ years

c. domain: $x \ge 0$, range: $0 \le y \le 15{,}000$

3. Sample answer: domain: all real numbers; range: all real numbers; vertical shrink by a factor of $\frac{1}{2}$; reflection in y-axis; translation 5 units up

4. Sample answer: domain: all real numbers; range: $y \le -3$; vertical shrink by a factor of 4; reflection in x-axis; translation 3 units down

5. Sample answer: domain: all real numbers; range: $y \ge 5$; horizontal stretch by a factor of 3; reflection in y-axis; translation 5 units up and 3 units left

1.1 Puzzle Time

BECAUSE PEOPLE ALWAYS SAY IF IT IS NOT BROKEN DO NOT FIX IT

1.2 Start Thinking

The equation becomes $y = \frac{2}{3}x + 3$; The equation becomes $y = \frac{2}{3}x + 1$; When 1 is added, by definition, the y-intercept moves up one unit. The slope is the same, so each point is moved up one unit. When -1 is added, the y-intercept moves down one unit, along with every other point on the line.

1.2 Warm Up

1.2 Cumulative Review Warm Up

- **1.** one
- **2.** one
- 3. zero

- **4.** one
- **5.** two
- 6. zero

1.2 Practice A

- **1.** g(x) = x + 3
- **2.** g(x) = x 3
- **3.** g(x) = |3x + 2| + 1 **4.** g(x) = 4x 2
- **5.** g(x) = 3x 7 **6.** $g(x) = -\frac{1}{3}x + 2$
- **7.** g(x) = |-4x| 6 **8.** g(x) = |-3x 5| + 3
- **9.** g(x) = 4x + 12
- **10.** $g(x) = \frac{4}{3}x + 1$
- **11.** g(x) = |9x| + 2 **12.** $g(x) = \left|\frac{1}{3}x + 1\right|$
- **13.** $g(x) = \frac{1}{3}x 4$ **14.** g(x) = |2x + 3|

1.2 Practice B

- **1.** g(x) = 5x 27 **2.** g(x) = 3x + 10
- **3.** g(x) = 3 |x| **4.** g(x) = |2x| + 1
- **5.** g(x) = x + 3
- **6.** $g(x) = -\frac{2}{3}x + 4$

Answers

7.
$$g(x) = -5 + |-x + 8|$$
 8. $g(x) = |-4x - 1| + 2$

9.
$$g(x) = 3 - \frac{1}{2}x$$
 10. $g(x) = x + \frac{5}{3}$

10.
$$g(x) = x + \frac{5}{3}$$

11.
$$g(x) = |9x| + 2$$

11.
$$g(x) = |9x| + 2$$
 12. $g(x) = -4|x - 2| + 8$

13.
$$g(x) = \frac{1}{4}x + \frac{5}{4}$$
 14. $g(x) = -|x + 2|$

14.
$$g(x) = -|x+2|$$

1.2 Enrichment and Extension

1.
$$g(x) = 2x - 8$$
; $x = 4$

2.
$$g(x) = -2x - 1$$
; $x = -\frac{1}{2}$

3.
$$g(x) = 6x - 6$$
; $x = 1$

4.
$$g(x) = 6x + 4$$
; $x = -\frac{2}{3}$

5.
$$g(x) = 4x - 14$$
; $x = \frac{7}{2}$

6.
$$g(x) = -2x - 6$$
; $x = -3$

7.
$$g(x) = |x - 1| - 2$$
; $x = 3$, $x = -1$

8.
$$g(x) = |x + 3| + 1$$
; no solution, does not intersect x-axis

9.
$$g(x) = -|x + 5|; x = -5$$

10.
$$g(x) = 2|x+1| - 6$$
; $x = 2$, $x = -4$

11.
$$g(x) = -|4x - 38|; x = \frac{19}{2}$$

12.
$$g(x) = -\frac{1}{2}|x - 3| + 2$$
; $x = 7, -1$

1.2 Puzzle time

JAMES MONROE

1.3 Start Thinking

You can model this situation with the equation y = 14.99x - 8.50x, where x represents the number of units sold and y represents the total profit. You are looking for the point that has a y-value of 150,000. By substituting 150,000 for y in the equation and solving for x, you obtain x = 23,113.

1.3 Warm Up

1.
$$D = \{0 \le x \le 82\}$$

 $R = \{0 \le y \le 12,300,000\}$

2.
$$D = \{0 \le x \le 5\}$$

 $R = \{0 \le y \le 4220\}$

3.
$$D = \{0 \le x \le 2500\}$$

 $R = \{0 \le y \le 13{,}125\}$

1.3 Cumulative Review Warm Up

1. 5.1

2. 9.3

3. 10.3

4. \$130.533.30

1.3 Practice A

1.
$$y = \frac{3}{50}x$$
; The sales tax rate is $\frac{3}{50} = 6\%$.

2.
$$y = -\frac{1}{2}x + 10$$
; An amount of $\frac{1}{2}$ ounce of soap is used each day.

- 3. Soapy Car Wash; 6 extras
- 4. not linear
- **5.** yes; $y = \frac{1}{2}x$; y = 7.5; This means 7.5 cars are washed in 15 minutes.
- **6.** yes; A correlation coefficient close to −1 is a strong, negative correlation.