Answers

1.4 Practice A

- **1.** quadrilateral; convex **2.** hexagon; concave
- **3.** about 16.5 units **4.** 21 square units
- **5.** 28 square units **6.** about 22.6 units
- **7.** about 10.5 units **8.** 32 square units
- **9.** 12 square units **10.** 44 square units
- **11.** (1, -3); 14 square units
- **12. a.** 360 ft **b.** 240 ft **c.** \$1000

1.4 Practice B

- **1.** heptagon; convex **2.** decagon; concave
- **3.** about 22.2 units **4.** 7.5 square units
- **5.** 28 square units **6.** about 13.2 units
- **7.** about 25.9 units **8.** 6 square units
- **9.** 36 square units **10.** 48 square units
- **11. a.** 65 ft² **b.** 40 ft **c.** \$242.50
- **12**. 4 mi

1.4 Enrichment and Extension

- **1.** 24 square units **2.** x = -4 or x = 8
- **3. a.** about 0.063 square units
 - **b.** about 32 squares
 - **c.** about 2 square units
- 4. about 1 square unit

1.4 Puzzle Time

TOO MANY PROBLEMS

1.5 Start Thinking

If the angle is larger than a right angle, it is obtuse. If the angle is smaller than a right angle, it is acute.

1.5 Warm Up

- 1. $x = 70^{\circ}$
- **2.** $r = 179^{\circ}$
- 3. $n = 144^{\circ}$

- **4.** $y = 90^{\circ}$
- **5.** $t = 65^{\circ}$
- **6.** $w = 120^{\circ}$

1.5 Cumulative Review Warm Up

1. $r = 40^{\circ}$ **2.** $w = 25^{\circ}$ **3.** $y = 40^{\circ}$ **4.** $v = 45^{\circ}$

1.5 Practice A

- **1.** $\angle XYZ$, $\angle ZYX$, $\angle Y$
- **2.** ∠*PQR*, ∠*RQS*, ∠*SQP*
- **3.** 110°; obtuse
- **4.** ∠BEH, ∠CFI
- **5.** $\angle AGD$, $\angle EBH$, $\angle BHE$, $\angle FCI$, $\angle CIF$
- **6.** 92°
- **7**. 44°
- **8.** 55°
- **9.** x = 33
- **10. a.** Sample answer: $\angle EFG$ is acute, $\angle DFE$ is right, $\angle FBC$ is obtuse, $\angle ABC$ is straight.
 - **b.** 15 angles
 - c. 70°
 - **d.** 110°

1.5 Practice B

- **1.** 50°; acute
- **2.** 90°; right
- **3.** 130°; obtuse
- 4. 180°; straight

- **5**. 44°
- **6.** 46°
- **7.** 47°
- **8.** 23°
- **9.** yes; Because an acute angle is less than 90°, the sum of three acute angles can be equal to 180°.
- **10. a.** *Sample answer:* ∠*ACE* is acute, ∠*AEC* is right, ∠*CDE* is straight.
 - **b.** ∠DAE
 - **c.** 58°
 - **d.** 119°

1.5 Enrichment and Extension

- **1.** 6 < *x* < 51
- **2.** $m\angle DEG = 40^{\circ}$, $m\angle FEG = 24^{\circ}$
- **3.** 6: 24°
- **4.** $2\sqrt{3}$

- **5**. 100°
- **6.** x = 5, y = 12

Answers

8. 45°

9. 45°

10. 175°

11. 95°

12. 140°

13. 140°

1.5 Puzzle Time

IS A CARRIER

1.6 Start Thinking

The angle formed is now greater than 180°. So, add the angle formed from the negative x-axis to its position in Quadrant III to 180° to get the total angle measure.

1.6 Warm Up

1.
$$x = 3$$

2.
$$c = -1$$
 3. $x = -1$

3.
$$x = -1$$

4.
$$n = 2$$

4.
$$n = 2$$
 5. $x = -15$ **6.** $x = -4$

6.
$$x = -4$$

1.6 Cumulative Review Warm Up

1.
$$n - 14 = 8, n = 22$$

2.
$$2(5n-6) = 18, n = 3$$

3.
$$14 = 7(n-2), n = 4$$

4.
$$2(x+6) = [x+(x+2)+(x+4)] + 5, x = 1,$$

 $x+2=3, x+4=5, x+6=7$

1.6 Practice A

1. ∠*FJG*, ∠*GJH*

2. ∠*CAD*, ∠*EJF*

3. ∠BAC, ∠EJG

4. 54°

5. 105°

6.
$$m \angle WXY = 149^{\circ}, m \angle YXZ = 31^{\circ}$$

7.
$$m\angle ABC = 48^{\circ}, m\angle CBD = 42^{\circ}$$

8. $\angle 4$ and $\angle 5$

9. yes; The sides form two pairs of opposite rays.

10. no; The sides do not form two pairs of opposite rays.

11.
$$x + (x + 24) = 180$$
; 78° and 102°

12.
$$x + 3x = 90$$
; 22.5° and 67.5°

13.
$$x + (\frac{1}{2}x - 15) = 180$$
; 50° and 130°

14. a. Sample answer: $\angle 1$, $\angle 2$

b. Sample answer: $\angle 2$, $\angle 5$

c. $\angle 6$ and $\angle 5$, $\angle 8$ and $\angle 5$

d. 60° ; $\angle 1$ and $\angle 3$ are vertical angles so they have the same angle measure.

1.6 Practice B

1. $\angle AEB$ and $\angle BEC$

2. $\angle BEC$ and $\angle HFJ$

3. $\angle CED$ and $\angle HFK$

4. 19°

5. 153.3°

6. $m\angle ABC = 84^{\circ}, m\angle CBD = 96^{\circ}$

7. $m \angle WXY = 23^{\circ}, m \angle YXZ = 67^{\circ}$

8. $\angle 1$ and $\angle 2$, $\angle 3$ and $\angle 2$

9. $\angle 7$ and $\angle 8$

10. yes; The sides form two pairs of opposite rays.

11. no; The sides do not form two pairs of opposite rays.

12. x + (2x + 9) = 90; 27° and 63°

13 x + 4x = 180; 36° and 144°

14. $x + (\frac{1}{2}x + 51) = 180$; 86° and 94°

15. never; The sum of the angle measures of a linear pair is 180°.

16. sometimes; When the sides of two angles form two pairs of opposite rays that meet at a 90° angle, the sum of the angle measures is 180°.

1.6 Enrichment and Extension

1. supplementary

2. complementary

3. neither

4. supplementary

5. neither

6. complementary

7. complementary: not possible, supplementary: $\frac{1}{5}\pi$

8. complementary: not possible, supplementary: $\frac{19}{42}\pi$

9. complementary: $\frac{11}{34}\pi$, supplementary: $\frac{14}{17}\pi$

10. complementary: $\frac{1}{10}\pi$, supplementary: $\frac{3}{5}\pi$